Toward Reduced Transport Errors in a High Resolution CO2 Inversion System
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Atmospheric transport is one of the key components in estimating posterior surface fluxes using an atmospheric inversion system. We present here a real-time
assimilation system applied to the Weather Research and Forecasting model (WRF) at high resolution to improve the representation of the atmospheric
dynamics in the i |nvers|un system. In addition to utilizing an optimal model configuration in model physics, we continuously assimilate surface and low

ions into the transport modeling system. For the Indianapolis Flux Experiment (INFLUX) project, we have developed a
Four Dimensional Data Assimilation (FDDA) technique coupled to the WRF model and the high resolution CO2 emission product Hestia to provide the most
accurate transport solutions of the 3D fields of CO2. Unlil ittent data assimilati (e.g., 3-D VAR, EnkF, etc) that introduce insertion nmse
detrimental to tracer transport FDDA and at each model time step to produce dynami

Introduction Preliminary Results

The assimilation of WMO surface stations shows a significant improvement compared to the historical WRF simulations in both wind speed and direction
at the surface (Fig 6-7), especially for the systematic errors over 5-day periods. Major discrepancies (from -60 hours to -40 hours) are significantly
decreased, from -40 degrees in the initial WRF simulation to -20 to +20 degrees in the WRF-FDDA simulation (Fig. 7). In the vertical, the assimilation of
surface stations improves the model performances up to 900m high. The additional use of Lidar data has a major impact up to 2km high, which
encompasses the entire Planetary Boundary Layer, critical for the inversion of CO, surface tower measurements (Fig. 8 and 9).
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at a desired spatial resolution. It has been proven to be an effective method to constrain model error and is widely used in WRF modeling system (Deng et al.
2009, Rogers et al. 2013).

We evaluated the effect of assimilating various observations on the WRF solutions, and its impact on the linearized adjoint solutions used in the CO2 inversion
system for INFLUX. Since WMO upper-air observations are sparse in time (i.e., 12 hourly apart) and space (hundreds of kilometers apart), additional
observations from different platforms were introduced, including the HALO lidar wind and aircraft from the airline
program, Aircraft Communications Addressing and Reporting System (ACARS). We present the inverse CO2 emissions over 2 months (September-October
2013) using different atmospheric simulations that assimilate surface stations, lidar, and ACARS, and assess the improvement in model performance based on
the ion used in our il system.

Model Description

WRF Model Physics: 1) Single-Moment 5-class simple ice scheme microphysical processes (WSMS),
2) Kain-Fritsch scheme for cumulus parameterization on the 9-km grid,
3) RRTM for longwave atmospheric radiation, and the Dudhia scheme for shortwave atmospheric radiation,
4) 2.5 TKE-predicting MYNN turbulent closure scheme (MYNN PBL),
5) 4-layer unified Noah land surface processes.
6) WRF-Chem (Grell et al. 2005) V3.5.1 release is used here

Data As:

ion: WRF FDDA with buth analysis nudging and observation nudging (Deng et al. 2009, Rogers et al. 2013) are used. Uslng FDDA Kechnlques,
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R Figure 8. of wind
speed RMSE from additional data
assimilation of INFLUX lidar data,
averaged over each hour from 00-
12 UTC 14 Sep 2013, for the 1-km
grid.

Figure 7. WRF error stats of ME
(blue), MAE (red), and RMES (green)
, on the 1-km grid, for FDDA_WMO
experiment

Figure 6. WRF error stats of ME (blue),
MAE (red), and RMES (green), on the
1-km grid, for NOFDDA experiment

“otoner
Figure 9. WRF wind direction
MAE profiles comparing all four
experiments.

The 5-day inverse emissions were computed using a Bayesian inversion system at 1km resolution over the urban area of Indianapolis. Figure 10 shows
the results over the two-month period (Sept-Oct 2013) for the whole-city emissions. The variability among the 3 inversion cases represents the impact
of differences in the WRF simulations. The WRF-FDDA with Lidar represents the optimal configuration with lower errors in both wind speed and
direction, and is considered here as the reference case. Overall, the inverse emissions over the two months vary from 800ktC for Hestia to 900-950ktC
for the different inversion estimates. The differences of about 50ktC among the inverse estimates represents about 50% of the change in the emissions
compared to Hestia.

The Lagrangian Particle Dispersion Model (Uliasz 1994) was coupled to the WRF model over the two-months (Sept-Oct 2013). Particles were released
continuously from the 12 tower locations in backward mode to simulate the area at the surface which directly influences the atmospheric
concentrations. The footprints for 24 September 2013 are shown in Figure 11. The variabilty of the surface influence functions correspond to the

were into the WRF-Chem system to produce a dynamic analysis, blending the model si and the
to produce the most accurate meteorological conditions possible to simulate the atmospheric CO, concentrations in space and time over the Indianapolis
region.

Data Types Assimilated: 1) Standard WMO surface and upper-air observations, available hourly for surface and 12-hourly for upper air.
2) Wind profiles from the local HALO lidar deployed by NOAA Earth System Research Laboratory Chemical Sciences Division
(http://, i ) ata location in Indi: is, available at 20- intervals.
3) The Aircraft Communications Addressing and Reporting System (ACARS) commercial aircraft observations, available anywhere in
space and time with low-level observations near the major airports.

Figure 1. WRF 9/3/1-km grid
configuration.

Figure 2. WRF 9-km grid landuse. Figure 3. WRF 3-km grid landuse. Figure 4. WRF 1-km grid landuse.

WRF Model Grids: 9km: 101x101, 3km: 100x100; 1km: 88x88; Fifty nine (59) vertical terrain-
following layers, with the first model layer at about 7 m AGL and with 24 model layers below
1.5 km AGL, Ptop=100 hPa, one-way nesting. Model grids and the landuse for each grid are

shown in Figs. 1 through 4.

'WRF “Dynamic Analysis” with FDDA Scheme
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FDDA Configuration: Multiscale FDDA with 3D analysis nudging and surface analysis nudging ¢ Anslyslshudging Lo
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modified Cressman analysis method (Deng et al. 2009). The three-dimensional (3D) analyses
and the surface analysis fields used for analysis FDDA are also enhanced by the obje
analysis process and are defined at three-hour intervals . For the chemistry initialization
with CO2, Hestia 2012 product (Gurney et al. 2012) was used to determine the emission
values .

Experimental Design

WRF-Chem system was configured to run for a two-month period (Sept.-Oct. 2013), in 5-day segments with a 12-hour overlapping time-window. The WRF
model solutions are then used to drive a Lagrangian Particle Dispersion Model (LPDM) that calculates the CO2 footprints of each CO2 tower observations. The
footprints are used to compute the influence function in the inversion system to compute the updated posterior CO2 fluxes. Four different WRF configurations
(or experiments) are conducted and results of both meteorological fields and posterior CO2 fluxes are compared among the four experiments:

Figure 5. WRF multiscale FDDA configuration.

NOFDDA : No data assimilation of any form is applied. WRF is purely driven by NARR
FDDA_WMO: Only standard WMO surface and upper-air observations are assimilated.
FDDA WMO _Lidar: In additional to WMO observations, wind profiles from the local HALO lidar are also assimilated.

FDDA_WMO_Lidar_ACARS: In addition to the WMO and lidar data, the ACARS observations are also assimilated .

in both wind speed (extent of the footprints along the main wind direction) and wind direction (width of the footprints). For this particular
day, the wind direction varies only slightly between the three configurations whereas the wind speed was too high without the use of the FDDA
system.
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Figure 10. Five-day CO, emissions over Indianapolis using the three
different WRF simulations. The Hestia CO, emissions were aggregated at
1km resolution and used as prior emissions in the inversion system
(Gurney et al, 2012), indicated in black. The inverse emissions correspond
to the 3 configurations described above with WRF in historical mode
(NOFDDA, in orange), assimilating the WMO stations (FDDA-WMO, in
purple), and assimilating the WMO and the HALO Lidar data (FDDA-
WMO_Lidar, in green).

Figure 11. Influence functions over Indianapolis at 1km resolution for the
12 tower locations of the INFLUX network using the LPDM (Uliasz et al.,
1994), for 24 September 2013 (aggregated over 17-22UTC) driven by the
meteorological variables from the three different WRF configurations, in
ppm_day/(g/m?/hour).

Conclusion

To estimate the impact of the meteorological assimilation system used in the Penn State CO2 inversion system, we conducted three WRF simulations for a
two-month period, with various meteorological data assimilation strategies applied, including four numerical experiments: NOFDDA, FDDA_WMO,
FDDA_WMO_Lidar, and FDDA_WMO_Lidar_ACARS. Model error can be si reduced by assimilating WMO . However, the i
of the WMO surface stations has a limited impact in the vertical (up to 900m max.). The assimilation of the wind profiles from the HALO lidar improved the
WRF simulated wind speed and direction up to 2km high. The model performances were further increased thanks to the assimilation of ACARS data, filling
the gaps between the 12-hourly WMO radiosondes and providing a better spatial density than the Lidar data.

The inverse emissions from the three simulations are significantly impacted by the quality of transport simulations, with a difference of 50% in the emission
correction after inversion ing on the transport simulations. The use of ical data improved the model performances and provided more
robust CO2 emissions at the city-scale, reducing the systematic errors in the inverse emissions. Therefore, we highly recommend the use of meteorological
assimilation systems for high resolution inversions to avoid the propagation of systematic errors from the transport model into the emission estimates.
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